При использовании материалов сайта ссылка обязательна Copyright by Silentvad |
{ГЛАВНАЯ}-{АВТОМОБИЛЬ}-{ЖИВОТНЫЕ}-{ПОЛЕЗНОЕ}-{РАБОТА}-{ФОТО}-{БИБЛИОТЕКА}-{ПРИКОЛЫ}-{КОНТАКТЫ} |
1. Понятие автоматической трансмиссии.Для понимания сути автоматической трансмиссии сравним её с простой механической трансмиссией. Рассмотрим вкратце главные компоненты автоматической трансмиссии и функции, которые они выполняют ( рис. 1)
Рис.1. Главные компоненты автоматической трансмиссии: 1)
Гидротрансформатор (ГТ) – соответствует
сцеплению в механической трансмиссии , но не требует непосредственного
управления со стороны водителя. 2. Гидротрансформатор. Общее устройство и принцип действия.
Гидротрансформатор (ГТ) (или torque converter в зарубежных источниках)
служит для передачи крутящего момента непосредственно от двигателя к
элементам автоматической коробки передач (АКП) и состоит из следующих
основных частей (рис. 2):
Рис. 2. Общее устройство гидротрансформатора Для иллюстрации принципа действия ГТ как элемента, передающего крутящий момент, воспользуемся примером с двумя вентиляторами (рис.3). Один вентилятор (насос) включён в сеть и создаёт поток воздуха. Второй вентилятор (турбина) - выключен, однако, его лопатки, воспринимая поток воздуха, создаваемого насосом, вращаются. Скорость вращения турбины меньше, чем у насоса, она как бы проскальзывает по отношению к насосу. Если применить этот пример по отношению к ГТ, то в нём в качестве вентилятора, включённого в сеть (насоса), выступает крыльчатка насосного колеса.
Рис. 3. Пример с вентиляторами
Насосное колесо механически связано с двигателем. В качестве
выключенного вентилятора (турбины) выступает турбинное колесо,
соединённое через шлицы с валом АКП. Подобно вентилятору - насосу,
крыльчатка насосного колеса ГТ, вращаясь, создаёт поток, только уже не
воздуха, а жидкости (масла). Поток масла, как и в случае с вентилятором
- турбиной, заставляет вращаться турбинное колесо ГТ. В данном случае
ГТ работает как обыкновенная гидромуфта, лишь передавая посредством
жидкости крутящий момент от двигателя на вал АКП, не увеличивая его.
Увеличение оборотов двигателя не приводит к сколь - ни будь
существенному увеличению передаваемого крутящего момента. В ГТ в процесс преобразования крутящего момента помимо насосного и турбинного колёс включён статор, который изменяет направление потока жидкости. Подобно воздуху, вращавшему лопатки вентилятора - турбины, поток жидкости (масла), вращавший турбинное колесо ГТ, всё ещё обладает значительной остаточной энергией. Статор направляет этот поток обратно на крыльчатку насосного колеса, заставляя её вращаться быстрее, увеличивая тем самым крутящий момент. Чем меньше скорость вращения турбинного колеса ГТ по отношению к скорости вращения насосного колеса, тем большей остаточной энергией обладает масло, возвращаемое статором на насос, и тем большим будет момент, создаваемый в ГТ.
Рис. 4. Статор ГТ удерживается обгонной муфтой Рис. 5. Статор ГТ вращается свободно
Турбина всегда имеет скорость вращения меньшую, чем насос. Это
соотношение скоростей вращения турбины и насоса максимально при
неподвижном автомобиле и уменьшается с увеличением его скорости.
Поскольку статор связан с ГТ через обгонную муфту, которая может
вращаться только в одном направлении, то, благодаря особой форме
лопаток статора и турбины поток масла направляется на обратную сторону
лопаток статора (рис. 4), благодаря чему статор заклинивается и
остаётся неподвижным, передавая на вход насоса максимальное количество
остаточной энергии масла, сохранившееся после вращения им турбины.
Такой режим работы ГТ обеспечивает максимальную передачу им крутящего
момента. Например, при трогании с места ГТ увеличивает крутящий момент
почти в три раза.
Для устранения этого недостатка используется блокировочная плита (см. рис. 6а). Она механически
связана с турбиной, однако, может перемещаться влево и вправо. Для её
смещения влево поток масла, питающий ГТ, подаётся в пространство между
плитой и корпусом ГТ, обеспечивая их механическую развязку, то есть,
плита в таком положении никак не влияет на работу ГТ.
Существуют и другие способы блокировки ГТ, однако, суть всех способов
одна - исключить проскальзывание турбины относительно насоса. В
зарубежных источниках такой режим работы ГТ называется Lock - up ( лок
- ап) 3. Планетарные ряды1) Необходимость
планетарных рядов.
Рис. 7. Планетарный ряд
Рис. 8. Принцип 2-й передачи в АКП
Солнечная шестерня находится в центре. Сателлиты вращаются вокруг
солнечной шестерни, в то время как она вращается вокруг своей
собственной оси. Эпицикл охватывает сателлиты, которые поддерживают
водило. Все сателлиты вращаются одновременно и в одном направлении.
Рис. 9. Принцип 1-й или пониженной передачи в АКП
Подумаем, что произойдёт, если заставить двигаться сателлиты, а,
следовательно, и водило, ещё медленнее. В предыдущем примере доска В
была зафиксирована, а доска А - двигалась. На этот раз будем медленно
двигать доску В в направлении, противоположном движению доски А. Как
показано на рис. 9, шарик движется медленнее, чем в предыдущем случае.
Что при этом происходит в планетарном ряде?
Рис. 10. Принцип 3-й передачи в АКП Что произойдёт, если двигать доску А и доску В в одинаковом направлении и с одинаковой скоростью? Шарик С между досками не может двигаться самостоятельно, следовательно, он двигается вместе с ними (рис. 10). Если в планетарном ряду эпицикл и солнечная шестерня вращаются в одинаковом направлении и с одинаковой скоростью, водило вращается в том же направлении и с той же скоростью. Такое соотношение скоростей данных элементов планетарного ряда осуществляется при включённой третьей (drive) передаче.
Рис. 11. Принцип задней передачи в АКП Попробуем двигать доску В в направлении, показанном стрелкой (рис. 11). Шарик С остаётся неподвижным, вращаясь только вокруг своей оси. В этом случае доска А двигается в направлении, противоположном направлению движения доски В. Применим эту ситуацию к планетарному ряду. Если водило зафиксировано и солнечная шестерня вращается по часовой стрелке (рис. 11), сателлиты вращаются и двигают эпицикл против часовой стрелки. В этом случае, если считать, что солнечная шестерня передаёт входной момент, а эпицикл - выходной, то применительно к автоматической трансмиссии получим передачу заднего хода (reverse gear).
Рис. 12. Принцип 4-й передачи в АКП Наконец зафиксируем доску В и будем двигать шарик С в направлении стрелки (рис. 12). Тогда доска А двигается с большей скоростью и в том же направлении, что и шарик. Снова применим эту ситуацию к планетарному ряду. Если солнечная шестерня (доска В) заблокирована, а водило (шарик С) вращается по часовой стрелке (рис. 12), сателлиты вращаются в том же направлении вокруг солнечной шестерни. Скорость вращения эпицикла складывается из собственной скорости вращения сателлитов и скорости их вращения вокруг неподвижной солнечной шестерни. Другими словами, эпицикл вращается быстрее, чем водило. Такое соотношение в трансмиссии характерно для четвёртой (overdrive) передачи.
Схема планетарного ряда Как правило, для переключения передач в 3 - скоростной автоматической трансмиссии используются 2 планетарных ряда, в 4 - скоростной - 3 планетарных ряда, но бывают и исключения, например, АКП AXOD (Ford).
4. О тормозах и фрикционах.
5. Гидравлическая система автоматической трансмиссии.В отличие от шестерёнчатого насоса, производительность которого зависит от числа оборотов двигателя, производительность лопастного насоса возрастает пропорционально числу оборотов двигателя лишь до определённой величины этих оборотов. По достижении двигателем таких оборотов количество масла, перекачиваемое лопастным насосом, больше не растёт, а составляет определённую постоянную величину (рис. 17), то есть линейное давление в гидравлической системе трансмиссии будет постоянным. Это уменьшает потери мощности в системе, возникающие при перекачке большего, чем необходимо, количества масла Рис. 17 Принцип действия лопастного масляного насоса переменной производительности заключается в следующем. Когда обороты двигателя невелики, золотник насоса находится в положении, показанном на рис. 18а и 18б, и количество перекачиваемого насосом масла увеличивается пропорционально росту числа оборотов двигателя. При достижении определённой величины оборотов двигателя давление Р преодолевает давление Р1, пружина (spring) 2 сжимается и золотник движется, как показано на рис. 18в и 18г. В этой позиции золотника масло перетекает из канала а в канал b и далее в канал контроля количества масла (volume control passage), откуда направляется в камеру переменного объёма (variable chamber) насоса. Кулачок (cam ring) эксцентрика под воздействием возросшего давления масла в камере поворачивается на ролике (pivot roller), сжимая пружину (spring) 1 и уменьшая величину эксцентриситета насоса. Следовательно, производительность насоса уменьшается, соответственно, уменьшается давление масла в магистрали.
При работе масляного насоса масло закачивается из масляного поддона (oil pan) в каналы масляной магистрали. Слив избыточного масла в поддон через каналы А и В перекрыт золотником масляного клапана (рис. 19). Золотник удерживается в таком положении пружиной, когда количество перекачиваемого масла невелико. При увеличении числа оборотов двигателя и, следовательно, масляного насоса, количество масла, проходящего через клапан регулировки давления, увеличивается. Давление в полости С клапана увеличивается, вынуждая золотник перемещаться вниз ( по рисунку), открывая канал для слива избыточного количества масла из полости А в полость В и далее в поддон. Таким образом, поддерживается постоянное давление масла, называемое линейным давлением. Масло под таким давлением подаётся также в ГТ.
рис. 19. Клапан регулировки линейного давления масла. 3) Дроссельный клапан (throttle valve).В целях обеспечения комфортного вождения автомобиля необходимо обеспечить правильное соотношение линейного давления масла и нагрузки на двигатель. Это соотношение регулирует дроссельный клапан. Дроссельный клапан регулирует линейное давление, которое подаётся на клапаны переключения передач и балансируется в них давлением, создаваемым центробежным регулятором (governor- ом). В общем, дроссельный клапан связан с дроссельной заслонкой двигателя и предназначен для определения нагрузки на двигатель и создания соответствующего этой нагрузке давления масла в гидравлической системе. Существуют
2 типа дроссельных клапанов: Рассмотрим
вкратце каждый из этих типов.
Рис. 20. Вакуумная диафрагма. Механический дроссельный клапан
(mechanical throttle valve).
Рис. 21. Механический дроссельный клапан. 4) Центробежный регулятор (governor), давление регулятора (governor pressure).
Давление центробежного регулятора - это давление масла, которое зависит
от скорости автомобиля. Регулятор посылает сигналы в виде различных
значений давления масла на клапаны переключения передач (1 - 2, 2 - 3,
3 - 4) для их автоматического включения (выключения).
Рис. 22. Центробежный регулятор типа А. Чувствительность регулятора достаточна при высокой скорости автомобиля, но недостаточна при низкой. Поэтому в регуляторе устанавливаются 2 золотника (груза) - первичный и вторичный. Более тяжёлый первичный золотник работает при малых скоростях автомобиля. При достижении автомобилем определённой скорости первичный золотник становится неэффективным и в работу вступает вторичный золотник. Это даёт возможность регулировать давление регулятора почти в прямой зависимости от скорости автомобиля, будь она низкой или высокой. График зависимости давления, создаваемого центробежным регулятором, от скорости автомобиля показан на рис. 23б.
Тип В (рис. 23а).
Рис. 23а. Центробежный регулятор типа В. 5) Ручной клапан (manual valve).Ручной клапан предназначен для реализации команд, поступающих непосредственно от водителя: ехать вперёд, назад или парковать машину. Для передачи своих команд в трансмиссию водитель использует рычаг переключения передач, который в нашем примере может быть установлен в следующие позиции: P, R, N, D, 2 и 1 (рис. 24).
Рис. 24. Ручной клапан. Рычаг переключения передач механически связан с ручным клапаном. В свою очередь, ручной клапан направляет масло в определённые каналы гидравлической системы трансмиссии, соответствующие каждому положению рычага переключения передач. Давление масла, которое проходит через ручной клапан, является линейным давлением и регулируется клапаном регулировки давления масла.
Что происходит с автомобилем при различных положениях рычага
переключения передач? В большинстве АКП клапан регулировки линейного давления масла и ручной клапан находятся в одном узле - клапанном устройстве (valve body). 6. Осуществление автоматического переключения передач в АКП.В разделе "О тормозах и фрикционах" уже объяснялось, что изменение передаточного числа планетарного ряда, то есть переключение передач, осуществляется путём блокирования и разблокирования различных элементов планетарного ряда с помощью тормозных лент и фрикционов. В зависимости от условий вождения, заданных водителем путём выбора определённого положения ручного клапана, клапаны переключения передач приводят в действие тормоза и фрикционы, которые блокируют (разблокируют) необходимые для включения (выключения) конкретной передачи элементы планетарного ряда АКП ( рис. 25)
Рис. 25.
В таблице, приведенной ниже, показано, какие в общем случае тормоза и фрикционы задействуются при выборе определённого положения ручного клапана, при включении различных скоростей, а также передаточное отношение в трансмиссии при включении разных передач (задействованные элементы отмечены знаком " + "):
Теперь рассмотрим на общем примере вкратце работу гидравлической системы трансмиссии при включении различных передач. Положение
D (1 - я передача).
Рис. 26. Работа гидравлической системы автоматической трансмиссии при включении 1-й передачи.
Положение D (2
- я передача).
Рис. 27. Работа гидравлической системы автоматической трансмиссии при включении 2-й передачи.
Положение D
(3 - я передача).
Рис. 28. Работа гидравлической системы автоматической трансмиссии при включении 3-й передачи. Примечание. Приведенный пример носит общий характер. Для каждой конкретной АКП характерны свои передаточные отношения при переключении передач, свои тормоза, фрикционы и элементы планетарных рядов, которые обеспечивают включение (выключение) каждой передачи. Принцип действия клапана переключения передач. В зависимости от условий вождения автомобиля АКП выполняет те же самые операции, что и водитель при вождении автомобиля с обычной коробкой передач, то есть включает повышенную передачу при разгоне автомобиля, включает пониженную передачу при торможении автомобиля, преодолении им крутых подъёмов или при перевозке автомобилем больших грузов. В гидравлической системе АКП механизмом, который непосредственно осуществляет переключение передач, является клапан переключения передач. В 3 - скоростной АКП таких клапанов 2: переключения с 1 - ой на 2 - ю и переключения со 2 - ой на 3 - ю передачу. В 4 - скоростной АКП к упомянутым двум клапанам добавляется третий: переключения с 3 - й на 4 - ю передачу. Рассмотрим принцип действия клапана переключения передач. Предположим, что дроссельная заслонка двигателя открыта на определённый угол и автомобиль движется на низкой передаче. При этой передаче суммарная составляющая силы пружины Fa, давления, создаваемого дроссельным клапаном Fb и линейного давления Fc, прикладываемых к золотнику клапана переключения передач, вынуждает его перемещаться вправо (рис.29). При увеличении скорости автомобиля пропорционально увеличивается давление Fd, создаваемое центробежным регулятором, которое, преодолевая суммарное воздействие сил Fa, Fb и Fc, вынуждает золотник перемещаться влево. При определённой величине давления Fd золотник переместится влево настолько, что откроется канал, через который линейное давление масла поступит к исполнительным механизмам (тормозам и фрикционам), включающим следующую повышенную передачу. Как только скорость автомобиля уменьшится, давление Fd, создаваемое центробежным регулятором, также уменьшится и золотник клапана под действием сил Fa, Fb и Fc снова переместится вправо, перекрывая канал для линейного давления масла. Повышенная передача выключится. При торможении автомобиль переходит на пониженную передачу на скорости, которая примерно на 5 км/ч меньше скорости перехода от данной пониженной передачи на следующую повышенную. Это улучшает управляемость автомобилем и снижает расход топлива.
Рис. 29. Принцип действия клапана переключения передач.
7. Механизмы подстройки давления в гидравлической системе автоматической трансмиссии.1) Клапан подстройки линейного давления масла (pressure modifier valve).Крутящий момент, передаваемый фрикционами трансмиссии при разгоне автомобиля, отличается от момента, передаваемого при движении с постоянной скоростью. Давление масла, необходимое для включения фрикциона при постоянной скорости автомобиля, меньше давления, необходимого для включения фрикциона при разгоне автомобиля. Для создания необходимого давления в гидравлической системе используется клапан подстройки линейного давления (рис.30), подстраивающий линейное давление до нужной величины. Когда давление 15, создаваемое центробежным регулятором и воздействующее на правую сторону золотника клапана подстройки давления, невелико, давление 16, создаваемое дроссельным клапаном плюс сила пружины, вынуждает золотник клапана подстройки перемещаться вправо. В результате, проход масла из магистрали 16 (давление дроссельного клапана) в магистраль 18 (линейное давление) перекрыт. С увеличением скорости автомобиля увеличивается давление 15 центробежного регулятора. Давление 15 преодолевает давление 16 дроссельного клапана и силу пружины и перемещает золотник клапана подстройки давления влево. Давление 16 поступает в магистраль 18 и, воздействуя на верхнюю часть клапана регулировки давления масла, уменьшает линейное давление масла 7. Как только скорость автомобиля и давление 15 центробежного регулятора уменьшаются, сила пружины и давление 16 дроссельного клапана преодолевают давление 15 и золотник клапана подстройки давления масла снова перемещается вправо. Масло, создающее давление 18 дроссельного клапана, идёт на слив через секцию пружины. Итак, золотник клапана подстройки линейного давления перемещается только тогда, когда давление центробежного регулятора больше давления дроссельного клапана. Рис. 30. 2) Аккумулятор (accumulator).Поршень аккумулятора уменьшает удары при переключении передач, когда включаются фрикционы или тормозная лента. Обычно линейное давление воздействует на удерживающую сторону поршня, вынуждая его прижиматься вниз (рис. 31). Когда линейное давление прикладывается к упомянутым фрикционам и тормозу, оно одновременно воздействует на рабочую поверхность поршня, вынуждая его подниматься вверх. Часть энергии масла при этом теряется, что и смягчает удары при переключении передач. Рис. 31. Принцип действия аккумулятора. 3) Соленоид кикдауна (kickdown solenoid).Соленоид кикдауна приводится в действие при резком нажатии водителем педали газа. Когда водитель быстро и полностью нажимает на педаль газа, переключатель соленоида замыкается ею (рис. 32). Напряжение подаётся на соленоид, благодаря чему шток соленоида выдвигается наружу, открывая так называемый клапан кикдауна. Линейное давление 7 подаётся в линию 13 и включает клапаны переключения 1 - 2 и 2 - 3 передач. При отпускании педали соленоид обесточивается и в таком состоянии шток соленоида и клапан кикдауна удерживаются пружиной таким образом, что проход между линиями 4 и 13 открыт, а между линиями 7 и 13 закрыт (см. рис. 28). Линейное давление 4 в этом случае через канал 13 подаётся на клапаны переключения 1 - 2 и 2 - 3 передачи, где оно преодолевает давление 15 центробежного регулятора. В результате в АКП происходит переключение с высшей передачи на низшую (см. принцип работы клапана переключения передач в разделе "Переключение передач в АКП"). Рис. 32. Соленоид кикдауна.
8. Дополнительные механизмы в АКП.1) Переключатель блокировки зажигания (inhibitor switch).Переключатель блокировки зажигания (рис. 33) механически связан с рычагом переключения передач и является частью электрической цепи включения стартера двигателя автомобиля. В целях безопасности он препятствует запуску стартера и, соответственно, двигателя, когда рычаг переключения передач не стоит в положении Р (паркинг) или N (нейтраль). Данный переключатель также используется для включения задних фонарей автомобиля, свидетельствующих о его торможении. 2) Парковочный механизм (parking mechanism).
Парковочный механизм механически блокирует АКП в целях предотвращения
скатывания автомобиля при его парковке.
Рис. 34. Парковочный механизм. 9. Особенности автоматической трансмиссии с электронными средствами управления и контроля (ЭУ - трансмиссия).Общая схема автоматической трансмиссии с электронными средствами управления и контроля приведена на рис. 35. Рис. 35. Схема электронноуправляемой автоматической трансмисси. Основные различия
между гидравлически- и электронноуправляемыми трансмиссиями приведены
ниже:
ЭУ- трансмиссия может работать в 3-х режимах: ECONOMY, POWER и HOLD, которые выбираются водителем (рис.36). Работа такой трансмиссии контролируется электронным блоком управления и контроля (компьютером, другими словами) и различными датчиками (см. рис.35).
Рис. 36. Переключатели режимов работы ЭУ-трансмиссии. Режим ECONOMY.
Режим POWER.
Режим HOLD. Основные электронные средства управления и контроля в ЭУ-трансмиссии.
1) Импульсный генератор.
Рис. 37. Импульсный генератор. Чувствительный ротор установлен на входном валу турбины ГТ и имеет несколько выступов на своей рабочей поверхности. При вращении ротора в момент прохода каждого выступа над датчиком турбины датчик выдаёт в электронный блок управления и контроля импульсный сигнал. Блок по частоте следования импульсов определяет скорость вращения турбины ГТ.
2) Датчик положения дроссельной заслонки. Рис. 38.
Переключение передач и блокировка (lock-up) ГТ в ЭУ-трансмиссии
основываются на электрических сигналах, поступающих в электронный блок
управления и контроля от импульсного генератора и датчика положения
дроссельной заслонки.
3) Соленоид.
Рис. 39б. Соленоид включен. Когда напряжение на обмотке соленоида отсутствует, шток соленоида перекрывает канал для слива масла (рис.39а). Давление масла, воздействующее на клапан переключения передачи, преодолевает давление пружины и заставляет золотник клапана перемещаться влево. Рис. 39а. Соленоид выключен. Существуют также соленоиды, в которых применяется обратная вышеописанной схема их открытия и закрытия, то есть при подаче напряжения на обмотку соленоида канал для слива масла закрывается, а при обесточивании соленоида - канал открывается.
Тырено тут http://www.toyota-rus.narod.ru/ |
[AD] |